Alexey Belyanin Lecture 3

Semiconductor nanostructures continued:

- Motivation for mid/far-infrared devices;
- Nonlinear dynamics of QC lasers;
- THz physics

From previous lecture:

Giant optical nonlinearity of quantum-well nanostructures + possibility of electron injection/depopulation

Enables novel optical devices, mostly in the mid/far-IR

First room-temperature THz semiconductor laser

- Make a powerful mid-IR QCL emitting at two modes
- Provide strong nonlinearity for frequency mixing process
- Design a low-loss, phase-matched waveguide for all three modes

Nature Phot. 2007, APL 2008

Highly nonlinear system of interacting propagating EM fields and electrons in QWs. Requires self-consistent modeling

Why should we suffer through this?

Why should you care?

Why nonlinear optics?

If you need to generate frequencies which you could not reach otherwise

Unique functionalities: broadband tuning, ultrafast modulation, generation of ultrashort pulses, pulse shaping, phase coherence, squeezed and entangled light

Why with intersubband transitions?

- Because it is fun! Freedom of design
- Emerging applications for mid-IR and THz light

PRIMARY MOTIVATION:

- Atmosphere has transparency windows in the infrared range
- <u>ALL</u> molecules have <u>STRONG</u> spectral fingerprints in the infrared

Other applications: infrared cameras, target pointers, countermeasures, telecommunications

HITRAN Simulation of Absorption Spectra (3.1-5.5 & 7.6-12.5 μm)

Air Pollution: Houston, TX

NASA Atmospheric & Mars Gas Sensor Platforms Frank Tittel et al.

Tunable laser sensors for earth's stratosphere Aircraft laser absorption spectrometers

Tunable laser planetary spectrometer

Non-invasive Medical Diagnostics: Breath analysis

NO: marker of lung diseases

- Concentration in exhaled breath for a healthy adult: 7-15 ppb
- For an asthma patient: 20-100 ppb

NH₃: marker of kidney and liver diseases

Need fast and compact sensors

Appl. Opt. 41, 6018 (2002)

Wide Range of Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. early fire detection)
 - Automobile and Aircraft Emissions
- Rural Emission Measurements
- Environmental Gas Monitoring
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Advanced Human Life Support Technology
- **Biomedical and Clinical Diagnostics** (e.g. non-invasive breath analysis)
- Forensic Science and Security
- Fundamental Science and Photochemistry
 - Life Sciences

World Through Terahertz Glasses $f = 1 \text{ THz} \Rightarrow E = 4 \text{ meV} \Rightarrow \lambda = 300 \text{ }\mu\text{m}$

- THz sees through dry opaque cover
- Unique THz spectra of explosives, biomolecules

Many frequency scales in doped semiconductors fall into the THz spectral range

1 THz = 4 meV

- Plasma frequency
- Fermi energy
- Electron scattering rates
- Cyclotron frequency in the magnetic field of ~ 1 Tesla
- Intra-donor transition frequencies
- Phonon frequencies
- Rich information can be extracted from THz spectroscopic studies
- Exotic conditions for atoms and plasma in superstrong magnetic fields

Nonlinear dynamics, phase coherence, and mode locking in quantum cascade lasers

Collaborators: F. Capasso group, Harvard Univ. F. Kaertner group, MIT

PRA 2007,2008, OE 2009, PRL 2009, PRL 2011; review: JMO 2011

Nonlinear interactions and phase coherence of laser modes

- QCL as a "two-level" but multimode laser
- Saturation nonlinearity and its many faces:
 - Limits growth of laser field
 - couples different modes, leading to mode competition, phase coupling, and mode locking

Cavity cross-section

Frequency and phase locking of transverse modes

Observed signatures:

- Anomalous near-field and far-field beam pattern; beam steering by current
- Locking to commensurate frequencies or synchronization of lateral modes to a single comb
- These effects appear and disappear as a bifurcation, with a slight change in injection current

Huge amount of research on transverse mode coherence, stationary or non-stationary pattern formation, coupled laser arrays etc.

- Numerous studies in diode lasers but they have different nature of nonlinearity, different dynamical behavior
- Synchronization is achieved by periodic modulation, external optical injection or feedback
- applications in communications and optical information processing (chaos synchronization, control of pattern formation, spatial and polarization entanglement)
- Recent studies of lateral mode structure in QCLs: Gellie et al. JAP 2009 (THz), Stelmakh et al. APL 2009 and Bewley et al. JQE 2005 (mid-IR)
- Lateral mode coherence and synchronization in QCLs: Yu et al. PRL 2009, Wojcik et al. OE 2010, PRL 2011

Three combs can lock into equidistant triplets or even to a single comb (synchronization). No external modulation is needed!

Note close grouping of modes with different transverse (and longitudinal) indices

N. Stelmakh et al., Appl. Phys. Lett. 94, 013501 (2009)

Why QCLs stand apart in dynamical and multimode behavior

Ultrashort gain recovery: $T_1 \sim 1$ ps

Dephasing time $T_2 \sim 0.1-0.5$ ps

Cavity roundtrip time: $T_r \sim 20-80$ ps Photon lifetime: $T_c \sim 10$ ps

 $T_2 < T_1 << T_r, T_c$

An overdamped Class-A laser: Polarization and inversion adiabatically follow the field

All other solid-state and diode lasers are Class B: $T_2 \ll T_{r,c} \ll T_1$

Trivial single-mode dynamics: only aperiodic processes, no relaxation oscillations

Ultrafast modulation is possible. How about mode locking?

Maxwell-Bloch Equations

$$\frac{d\sigma}{dt} + \gamma_{\perp}\sigma = \frac{-id}{2\hbar} D\sum_{\lambda} a_{\lambda} E_{\lambda}(\mathbf{r}) \qquad T_{1} = 1/\gamma_{\parallel} \\ T_{2} = 1/\gamma_{\perp} \\ \frac{dD}{dt} + \gamma_{\parallel}(D - D_{p}) = \frac{-id}{\hbar} \sum_{\lambda} E_{\lambda}(\mathbf{r}) (a_{\lambda}^{*}\sigma - a_{\lambda}\sigma^{*}) \\ \frac{da_{\lambda}}{dt} + (\kappa_{\lambda} + i\Delta_{c\lambda})a_{\lambda} = 4\pi i\omega_{0}Nd \frac{1}{Vc} \int \sigma E_{\lambda}(\mathbf{r})dV \\ \text{Field} \qquad E(\mathbf{r}, t) = \sum_{\lambda} (1/2)a_{\lambda}(t) \exp(-i\omega_{0}t) E_{\lambda}(\mathbf{r}) + \text{c.c.} \\ \text{Polarization } P = Nd\sigma e^{-i\omega_{0}t} + \text{c.c.} \\ \text{Population inversion } D = \frac{N_{2} - N_{1}}{N} \qquad \text{``Linear'' cavity modes}$$

- Adiabatic elimination of inversion and polarization
 X⁽³⁾ enpression
- X⁽³⁾ approximation

Coupled equations for modal amplitudes:

$$\frac{da_{j}}{dt} + (\alpha_{j} + i(\omega_{cj} - \omega_{0}))a_{j} = \sum_{2}^{g_{j}} \sum_{k} a_{k} \int_{AR} \varepsilon E_{j} E_{k} dV + \sum_{l_{s}}^{2} \sum_{k,l,m} G_{jklm} a_{k} a_{l}^{*} a_{m}$$
Cavity dispersion/loss Modal gain Nonlinear mixing
Nonlinear overlap - $G_{jklm} = \int_{AR} \varepsilon E_{j} E_{k} E_{l} E_{m} dV$

$$T_{1} = 1/\gamma_{\parallel}$$
Gain - $g_{j} = 4\pi\omega_{0}d^{2}N_{p}T_{2}/(\hbar\mu_{j}^{2})$

$$T_{2} = 1/\gamma_{\perp}$$

Saturation intensity $I_s = 2\hbar^2 / (d^2 T_1 T_2)$

Large dipole moment gives rise to strong nonlinear coupling of laser modes

Fast gain relaxation $T_1 \sim 1$ ps (Type A laser) overdamps relaxation oscillations and leads to stable phase locking. No saturable absorber or external modulation!

Mean field approximation (averaging over the cavity length)

$$a_j(t) = A_j(t)e^{i\Phi(t)}$$

Modal amplitudes A(t) and phases $\Phi(t)$ for five different initial conditions

Locking to a single frequency

$$\Omega = \frac{d\Phi(t)}{dt}$$

For each gain: determine all stable solutions starting from a large set of random initial phases and amplitudes

- Single stable multimode state locked to a single frequency at intermediate gains
- Bistable region outside

Longitudinal modes of a linear cavity $\propto \exp(\pm i\beta_{\mu}z \pm g_{\mu}z) \quad \beta_{\mu} \approx N_{\mu}\pi/L_{cav}, N_{\mu} \sim 1800$

number of triplets if they are separated

(not resolved)

Transverse Angle [Degree]

9 Modes - Dynamics of 3 Close Triplets

30 initial conditions for each gain

Mode-locked pulses in QCLs

Can we generate ultrashort pulses in the mid/far-infrared?

This is very difficult in QCLs where T₁ << T_{round-trip}

ACTIVE MODE LOCKING

Modulation at the round-trip frequency

 $cos(\omega_m t)$ active modulation of laser gain creates phase-locked sidebands coincident with the two closest cavity modes

Passive mode locking

Saturable absorption (intensity-dependent losses)

Gain should be saturated!
$$g = \frac{g_0}{1 + \frac{I_{average}}{I_s}}$$

Saturable absorption due to Kerr effect:

 $n = n_0 + n_2 l$

Gain should have long recovery time:

to achieve stable mode locking Haus condition must be met :

In QCLs this condition is not fulfilled

gain recovery time > roundtrip time $= 2L_c/c$

Attempts to generate mode-locked pulses

Laser structure: superdiagonal

Calculated upper state lifetime ~50 ps Confirmed by T. Norris measurements

Gain recovery time ??? Fast components in gain recovery

Capasso group 2008

Active mode locking

Gain is modulated in a short section at the round-trip frequency $f = 1/T_r$

Capasso group, OE 2009, 2010

I=340mA, with 35dBm RF power

Wavenumbers (cm-1)

Resonance @ 17.86 GHz Power ~ 10 mW

Capasso group

2-Photon Autocorrelation shows 3-ps pulses

3385 Multisection w/SU-8 cladding #2 340mA, 2dBm+isolator+amp @ 17.86GHz

Pulse width Estimated from The interference Part ~ 3ps

High-amplitude modulation is required;Wang et al. OE 2009Mode locking exists only very close to laser threshold

Self mode locking in QCLs?

- Can locking of multiple transverse modes lead to pulsed operation?
- Mode locking in the coherent regime?
 Faster than dephasing time T₂. RNGH instability, π-solitons, ...

Coherent light-matter interaction

$$\frac{d\sigma}{dt} + \gamma_{\perp}\sigma = \frac{-id}{2\hbar} D\sum_{\lambda} a_{\lambda} E_{\lambda}(\mathbf{r})$$
$$\frac{dD}{dt} + \gamma_{\parallel}(D - D_{p}) = \frac{-id}{\hbar} \sum_{\lambda} E_{\lambda}(\mathbf{r})(a_{\lambda}^{*}\sigma - a_{\lambda}\sigma^{*})$$
$$\frac{da_{\lambda}}{dt} + (\kappa_{\lambda} + i\Delta_{c\lambda})a_{\lambda} = 4\pi i\omega_{0}Nd\frac{1}{Vc}\int\sigma E_{\lambda}(\mathbf{r})dV$$

Polarization $P = Nd\sigma e^{-i\omega_0 t} + c.c.$

Population inversion $D = \frac{N_2 - N_1}{N}$ Polarization cannot be eliminated if $\frac{dE}{h} > \gamma_{\perp}$ Or for any processes faster than $T_2 = 1/\gamma_{\perp}$

Self-induced transparency mode locking Ultrashort T₁ is an advantage!

Letokhov 1969, Kozlov PRA 1997 Menyuk et al. PRL 2009

Mode-locked pulse is a π pulse in the gain region and 2π -pulse in the absorbing region

Laser does not self-start; requires injection of ~ 1 ps pulse

"Second threshold"

Regular pulsations and chaos in single-mode lasers

Haken, Oraevskii 1960s

Requires pumping 9 times above threshold and "bad-cavity" laser: cavity line broader than the gain spectrum, or photon lifetime < T_2

Generation of sidebands in multimode lasers – RNGH instability

Risken & Nummedal 1968, Graham & Haken 1968

- RNGH instability has been elusive since 1968. No bad cavities, but it still requires pumping 9 times above threshold.
- Claims of observing it in fiber lasers remain controversial.
- Unambiguous observations in QCLs PRA 2007, 2008

Kocharovsky 2001: RNGH instability leads to mode-locked pulses in fiber ring lasers

Nonlinear deformation of the gain spectrum

q : normalized loss in a saturable absorber Pumping is two times above threshold

If q = 0 (no saturable absorber): Instability threshold is: $I_{pump} > 9 I_{thr}$

QCL spectra

Breaking down of CW single mode into two or multiple spectral humps Observed in QC lasers of different designs

Low threshold ~ 1.2 j_{thr} Measurements by Capasso group

Grows as 2xRabi frequency of the field

Rabi splitting of the spectra

Rabi splitting of the spectra

Nonlinear interferometric autocorrelation

Spatial hole burning may prevent mode locking

Conclusions

- QCLs show rich nonlinear dynamics and phase-coherent phenomena
- Stable phase locking and synchronization of lateral modes
 - Requires nearly equal thresholds for several lateral modes (buried heterostructure laser);
 - Note that stable locking of longitudinal modes belonging to ONE transverse mode is impossible without a saturable absorber
- CONTROL over the phases of locked modes?
- Can we make stable pulses out of locked lateral modes?
- Only active mode locking was achieved so far. Is single-pulse operation via passive mode locking possible?