Optics of semiconductor nanostructures: an overview

Alexey Belyanin

Department of Physics and Astronomy
Texas A&M University

"One should not work on semiconductors, that is a filthy mess; who knows whether they really exist."

Wofgang Pauli 1931

Lecture 1

Electron states and optical properties of bulk semiconductors and quantum wells



Free particle can have any energy

Confined particle has a discrete set of possible states and discrete set of energies.

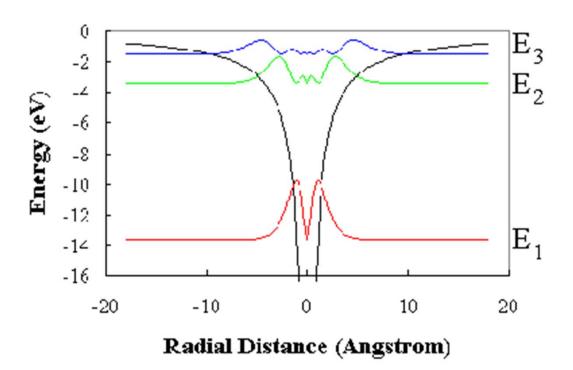
These states determine all optical properties.

Electrons in atoms are confined, but only a bunch of different atoms exist, with rigid selection rules

Electrons in crystals: only band-to-band transitions, with rigid constraints due to crystal symmetry and selection rules

By confining electrons in nanostructures, one can create "artificial atoms" with any optical property on demand

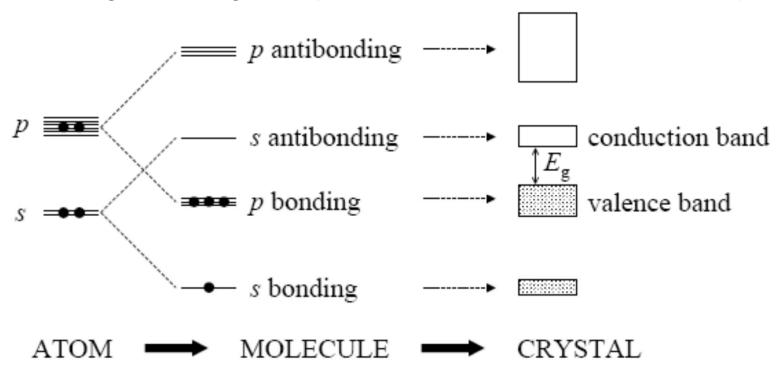
The hydrogen atom potential and wavefunction



Optical transitions are determined by properties of atoms (confining potential, symmetry, etc.)

Band formation from overlapping atomic orbitals

Now bring atoms together (to a distance of 3 A from each other)



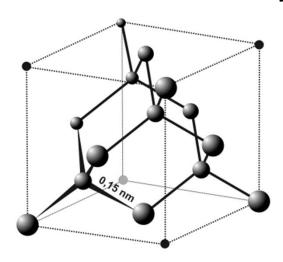
Electron states in crystals

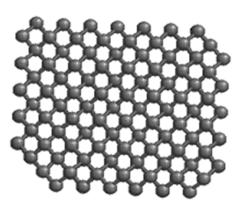
Dense many-body quantum systems: 10²² particles per cm³

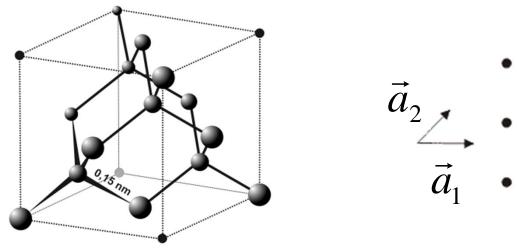
It seems to be hopeless to find wave functions and energy spectra

However, crystal lattice symmetry helps tremendously

Crystal potential consists of a 3D lattice of ionic core potentials screened by the inner shell electrons, which are further surrounded by the bond charge distributions which hold everything together







$$\vec{a}_{2}$$

$$\vec{a}_{1}$$

$$R = \vec{a}_{1} + 3\vec{a}_{2}$$

A unit lattice cell is spanned by primitive vectors \vec{a}_i The whole lattice is spanned by their linear combination:

$$\vec{R}_n = \sum_i n_i \vec{a}_i$$

- 1) Replace a many-body problem of interacting electrons and ions with motion of a single "electron" in the effective potential created by all other particles;
- 2) Assume that the effective crystal potential has the symmetry and periodicity of a lattice

Schroedinger's equation for a single electron in a periodic potential V(r):

$$\left\{\frac{p^2}{2m_0} + V(\mathbf{r}) + \frac{\hbar}{4m_0^2c^2} [\nabla V \times \mathbf{p}] \cdot \sigma\right\} \psi \ = \ E\psi,$$

Introduce translation operator

$$T_n \psi(k,r) = \psi(k,r+R_n) = t_n \psi(k,r)$$

 $\psi(k,r)$ is eigen function of both H and T_n ; k is the quantum number associated with T_n .

$$t_n$$
 is a phase factor with $|t_n|$ = 1 $\psi(k, r + R_n) = e^{ikR_n}\psi(k, r)$

Bloch theorem:

$$\psi_{\lambda} = \frac{1}{L^{3/2}} e^{ikr} u_{\lambda}(k,r)$$
 - Bloch functions

$$u_{\lambda}(k,r) = u_{\lambda}(k,r+R_n)$$

A simpler argument:

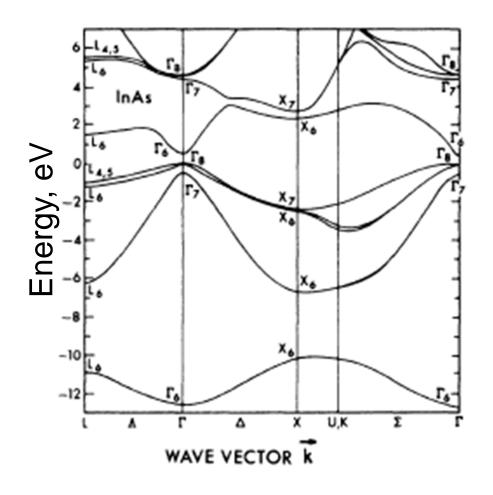
$$V(r+R_n) = V(r)$$

$$|\psi(r+R_n)|^2 = |\psi(r)|^2$$

$$\psi(k,r+R_n) = e^{ikR_n}\psi(k,r)$$

Bloch theorem:
$$\psi_{\lambda} = \frac{1}{L^{3/2}} e^{ikr} u_{\lambda}(k,r)$$

For each k, there is a set of energies $E_{\lambda}(k)$. With changing k, they form continuous *bands*, separated by forbidden bands, or band gaps.



Bands are periodic in k:

$$E(k+g) = E(k)$$

g – the vector of reciprocal lattice

$$V(r) = \sum_{g} C(g)e^{igr}$$

g should satisfy $e^{igR_n}=1$

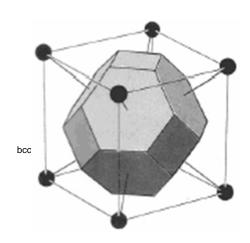
$$g = \sum_{i} n_{i} b_{i}; b_{i} a_{j} = 2\pi \delta_{ij}$$

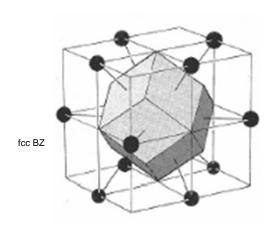
Wigner-Seitz cell

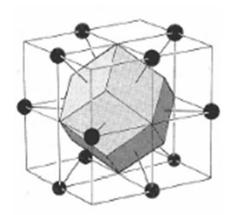
Brillouin zone

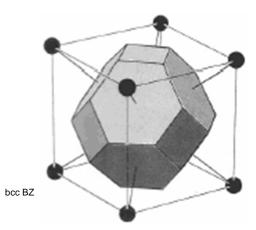
Lattice Real Space

Lattice k-space





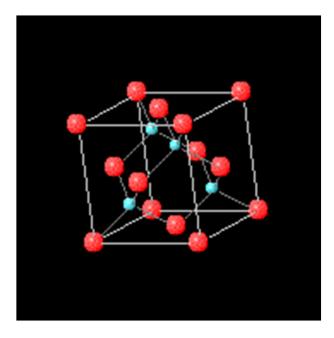




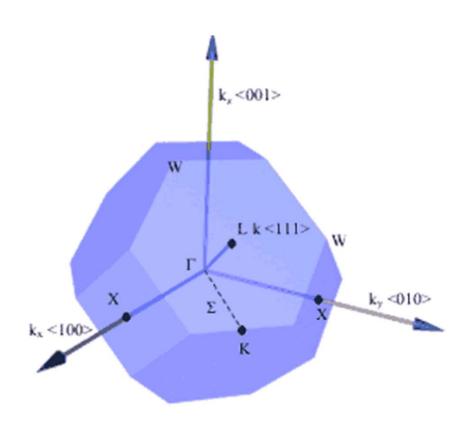
Zinc blende structure

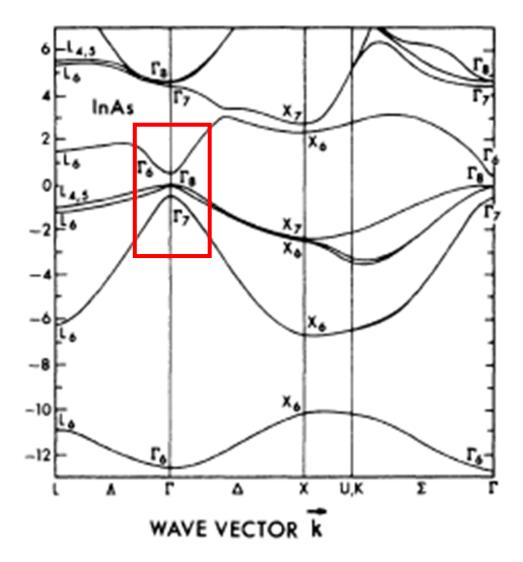
III-V semiconductors





First Brillouin Zone





We often need to know electron states only near the band extrema, where electron dispersion is close to parabolic: $b^{2} L^{2}$

m_{eff} is of arbitrary value, sign, anisotropy

$$E \approx \frac{11 \text{ K}}{2m_{eff}}$$

k.p method

Schroedinger's equation for a single electron in a periodic potential V(r):

$$\left\{ \frac{p^2}{2m_0} + V(\mathbf{r}) + \frac{\hbar}{4m_0^2 c^2} [\nabla V \times \mathbf{p}] \cdot \sigma \right\} \psi = E\psi, \tag{1}$$

 $\psi = e^{i\mathbf{k}\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$ - Bloch functions

$$\hat{p} = -i\hbar\nabla \qquad p^2 [u_{n\mathbf{k}}(r)e^{i\mathbf{k}\mathbf{r}}] = [(p + \hbar\mathbf{k})^2 u_{n\mathbf{k}}(r)]e^{i\mathbf{k}\mathbf{r}}$$

$$\left\{\frac{p^2}{2m_0} + V(\mathbf{r}) + \frac{\hbar}{4m_0^2c^2}(\sigma \times \nabla V) \cdot \mathbf{p} + \frac{\hbar^2k^2}{2m_0} + \frac{\hbar\mathbf{k}}{m_0} \cdot \left(\mathbf{p} + \frac{\hbar}{4m_0c^2}\sigma \times \nabla V\right)\right\} u_{n\mathbf{k}} = E_{n\mathbf{k}}u_{n\mathbf{k}}. \tag{2}$$

Express $u_{nk}(\mathbf{r})$ in terms of Bloch functions at k = 0: $u_{nk} = \sum_{m} c_m(k) u_{m0}$.

where
$$\left[\frac{p^2}{2m_0} + V(r)\right] u_{n0}(r) = E_{n0}(r)u_{n0}(r)$$

Obtain after multiplying by $u_{n0}^*(r)$ and integrating (1) over unit cell:

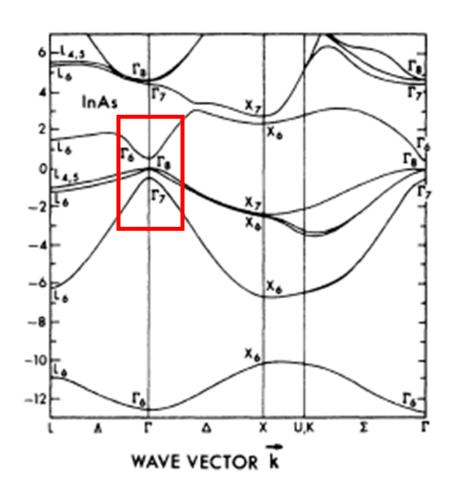
$$\sum_{m} \left\{ \left(E_{n0} - E_{m\mathbf{k}} + \frac{\hbar^{2}k^{2}}{2m_{0}} \right) \delta_{nm} + \frac{\hbar\mathbf{k}}{m_{0}} \cdot \mathbf{p}_{nm} + \frac{\hbar}{4m_{0}c^{2}} \left(\left[\nabla V \times \mathbf{p} \right] \cdot \sigma + \left[\nabla V \times \mathbf{k} \right] \cdot \sigma \right)_{nm} \right\} c_{m}(\mathbf{k}) = 0$$

$$\mathbf{p}_{nm} = \int_{unit\,cell}^{*} u_{n0}^{*}(\mathbf{r}) \mathbf{p} u_{m0}(\mathbf{r}) d\mathbf{r}$$
 Note the coupling between bands via k-p term and spin-orbit interaction

This is a matrix diagonalization problem; however it is still too complicated because of too many bands

Next step: Lowdin's perturbation method to reduce the size of the problem

Only closest bands are included (e.g. 8 bands)

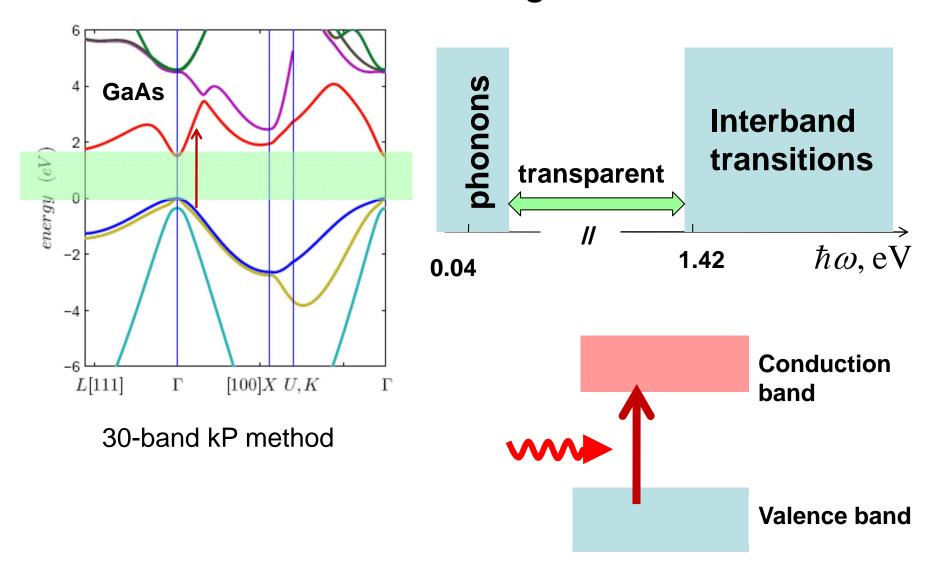


The Luttinger-Kohn basis for $u_{n0}(r)$ states:

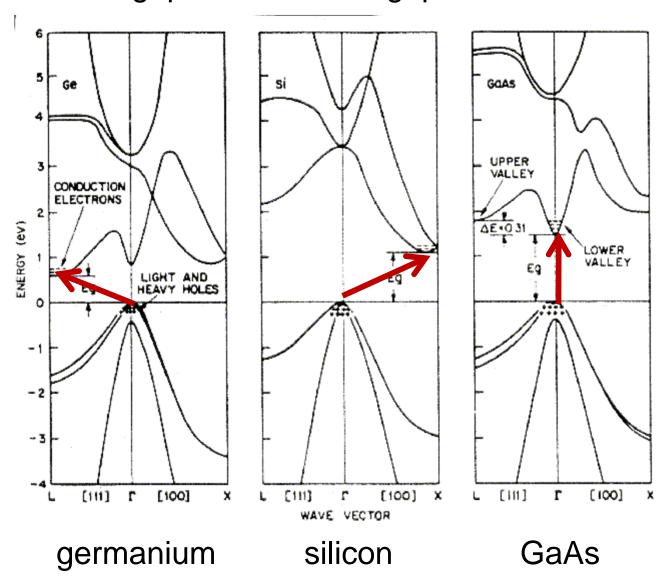
$$|J, m_J\rangle$$
 ψ $H(k = 0)$
 CB $S \uparrow$ E_g
 $S \downarrow$ E_g
 HH $|3/2, 3/2\rangle$ $(\frac{X+iY}{\sqrt{2}}) \uparrow$ 0
 $|3/2, -3/2\rangle$ $-\frac{1}{\sqrt{2}}(X-iY) \downarrow$ 0
 LH $|3/2, 1/2\rangle$ $-\sqrt{\frac{2}{3}}Z \uparrow + \frac{1}{\sqrt{6}}(X+iY) \downarrow$ 0
 $|3/2, -1/2\rangle$ $-\frac{1}{\sqrt{6}}(X-iY) \uparrow -\sqrt{\frac{2}{3}}Z \downarrow$ 0
 SO $|1/2, 1/2\rangle$ $\frac{1}{\sqrt{3}}(X+iY) \downarrow + \frac{1}{\sqrt{3}}Z \uparrow$ $-\Delta$
 $|1/2, -1/2\rangle$ $-\frac{1}{\sqrt{3}}Z \downarrow + \frac{1}{\sqrt{3}}(X-iY) \uparrow$ $-\Delta$

S,X,Y,Z are similar to S-like and P-like atomic states (lowest order spherical harmonics Y_{00} , Y_{10} , Y_{11} etc.)

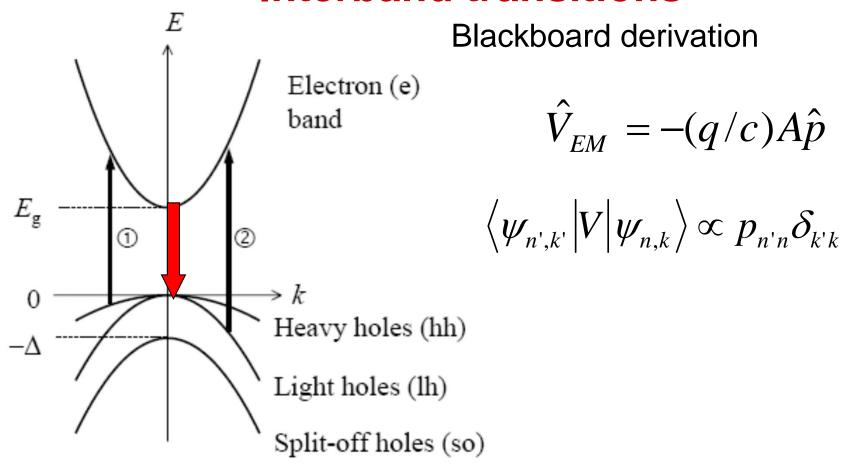
Bulk intrinsic semiconductors can only absorb light



Indirect-gap versus direct-gap semiconductors



Interband transitions



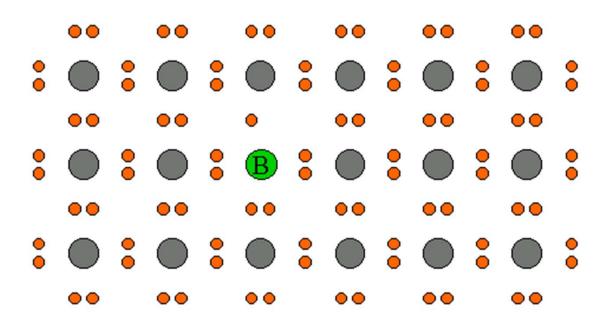
Need to calculate matrix element p_{n'n} and know density of states and their occupation

Density of states: blackboard derivation

The best thing about semiconductors: they can be doped

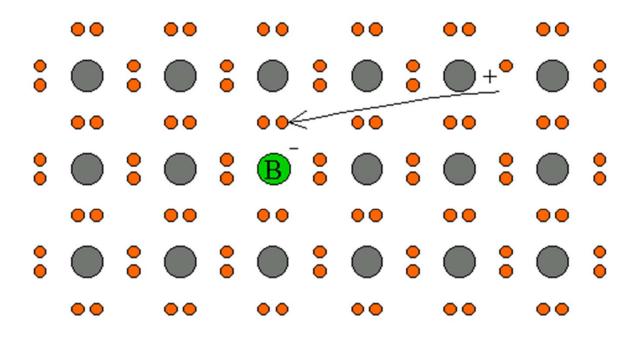
Donors in silicon: Phosphorus and Arsenic (group V) 00 •• •• •• ••

Acceptors in silicon: Boron (group III)



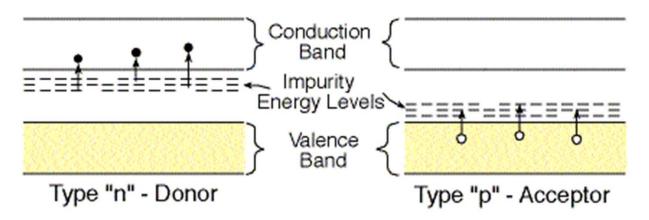
© Bart Van Zeghbroeck, 1998

Ionization of acceptors



© Bart Van Zeghbroeck, 1998

Small amount of impurities (dirt) leads to huge changes in conductivity; Both negative and positive current carriers are possible



Revolution in the way we process information: Enabled by transistors, memory, computers, lasers, telecommunications

Doping enabled optoelectronic devices

