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“One should not work on semiconductors, 
that is a filthy mess; who knows whether 
they really exist.”

Wofgang Pauli 1931

Lecture 1
Electron states and optical properties 

of bulk semiconductors and quantum wells



Free particle can have any energy
Confined particle has a discrete set of possible 
states and discrete set of energies.
These states determine all optical properties.

Electrons in atoms are confined, but only a bunch of different 
atoms exist, with rigid selection rules 

Electrons in crystals: only band-to-band transitions, with rigid 
constraints due to crystal symmetry and selection rules 

By confining electrons in nanostructures, one can create 
“artificial atoms” with any optical property on demand



Optical transitions are determined by properties of 
atoms (confining potential, symmetry, etc.) 



Band formation from overlapping atomic orbitals

Now bring atoms together (to a distance of 3 A from each other)



Electron states in crystals

Dense many-body quantum systems: 1022 particles per cm3

It seems to be hopeless to find wave functions and energy spectra 

However, crystal lattice symmetry helps tremendously

Crystal potential consists of a 3D lattice of ionic core 
potentials screened by the inner shell electrons, which 
are further surrounded by the bond charge distributions 
which hold everything together



1) Replace a many-body problem of interacting electrons and ions with 
motion of a single “electron” in the effective potential created by all 
other particles;

2) Assume that the effective crystal potential has the symmetry and 
periodicity of a lattice

A unit lattice cell is spanned by primitive vectors ia

The whole lattice is spanned by their linear combination:
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Schroedinger’s equation for a single electron in a periodic potential V(r):
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Introduce translation operator

),( rk is eigen function of both H and Tn ; k is the quantum number
associated with Tn. 

tn is a phase factor with |tn| = 1 ),(),( rkeRrk nikR
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Bloch theorem:
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A simpler argument:
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For each k, there is a set of energies E(k).
With changing k, they form continuous bands, separated by 
forbidden bands, or band gaps.

Bands are periodic in k:
E(k+g) = E(k)
g – the vector of reciprocal lattice

V (r)  C(g)eigr
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Lattice Real Space Lattice k-space 

bcc WS cell fcc BZ

fcc WS cell bcc BZ

Brillouin zoneWigner-Seitz cell 



Zinc blende structure
III-V semiconductors



First Brillouin Zone



We often need to know electron states only near the band extrema,
where electron dispersion is close to parabolic:
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kp method

- Bloch functions)(rk
kr

n
i ue

(1)

Schroedinger’s equation for a single electron in a periodic potential V(r):
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Express     )(rknu in terms of Bloch functions at k = 0:
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0 Note the coupling between bands 
via kp term and spin-orbit 
interaction

Obtain after multiplying by                and integrating (1) over unit cell: )(*
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This is a matrix diagonalization problem; however it is still too 
complicated because of too many bands

Next step: Lowdin’s perturbation method to reduce the size of 
the problem
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Only closest bands are included (e.g. 8 bands)



The Luttinger-Kohn basis for un0(r) states:

S,X,Y,Z are similar to S-like and P-like atomic states (lowest order 
spherical harmonics Y00, Y10, Y11 etc.)



Bulk intrinsic semiconductors can only 
absorb light
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Indirect-gap versus direct-gap semiconductors

germanium silicon GaAs



Interband transitions

ˆ V EM  (q /c)Aˆ p 

n',k ' V n,k  pn 'nk'k

Need to calculate matrix element pn’n and know 
density of states and their occupation

Blackboard derivation



Density of states: blackboard derivation



The best thing about semiconductors: they can be doped







Small amount of impurities (dirt) leads to huge changes in conductivity;
Both negative and positive current carriers are possible

Revolution in the way we process information: 
Enabled by transistors, memory, computers, lasers, telecommunications 



Doping enabled optoelectronic devices
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