
Lecture 2
Electron states and optical properties 

of semiconductor nanostructures



Bulk semiconductors

Band gap Eg

Band-gap slavery: only 
light with photon energy 
equal to band gap can 
be generated.

Very few semiconductors 
are suitable

Near-infrared, red, blue
Just recently – green

Mid-infrared: low-T 
operation, bad quality

Oscillator strengths, selection 
rules cannot be changed

Low density of states, low dg/dN



Quantum-confined electron gas
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Envelope function approximation

(a) Add quantum-well potential U(r)
to the bulk Hamiltonian H0

(b) Seek the solution as
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fn(z) – slowly varying envelope functions

(c) Replace kz with 
z
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 and solve the resulting differential matrix 
equation for the vector f(z)

For a single band we may obtain effective mass approximation: 
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Quantum wells
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Envelope functions f(z) and optical transitions

Subband dispersion E(k||)
Interband transitions: similar 
to bulk materials, but better 
performance
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Optical transitions in quantum wells
Intersubband transitions: sharp atomic-like lines
No cross-absorption

Line broadening ~ 10 meV due to interface roughness and 
non-parabolicity (in narrow-gap semiconductors)



Intersubband transitions: dipole moment
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Typical values ~ 10-100 A
Compare with atomic transitions ~ 0.2-0.5 A
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Intersubband transitions: selection rules
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- Dipole matrix element: 

f1 and f3 are even  -> z13 = 0

- Only TM-polarization (E  QW plane)
E, z
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Build your own 
nanostructure:

E-field eEzzVzV  )()(

• Sharp resonances
• Tunable frequencies and 

oscillator strengths
• High-quality materials
• Indirect-gap semiconductors
• Coupling to other excitations: 

phonons, plasmons



Superlattices
Periodic “super” potential 
superimposed on periodic 
lattice potential

Keldysh 1964; Esaki and Tsu 1970



0 100 200 300 400 500 600
0

100

200

300

400

500

600

Z-axis (Angstrom)

En
er

gy
 (

m
eV

)

Wavefunctions

En
er

gy
 (

m
eV

)

En
er

gy
 (

m
eV

)

From discrete to quasi-
continuous spectrum E(q)

miniband

minigap



Growth rate 1 m/hr or 1 atomic layer in 1 sec

Molecular Beam Epitaxy

A. Cho, Bell Labs.



III-V semiconductor grown on Ge
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Only materials with closely matching lattice periods and thermal 
expansion coefficients can be grown on top of each other without 
defects



GaAs/AlxGa1-xAs; GaxIn1-xAsyP1-y/AlxIn1-xAs on InP; 
InAs1-xSb/AlGa1-xSb on GaSb



Quantum wires and dots

http://www.nanonet.go.jp/english/mailmag/2
003/001a.html



http://www.mpi-halle.mpg.de/



Magnetic quantum wires and dots
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Electron states
in semiconductor nanostructures 

Blackboard derivation



Density of states



How can we use it?
• Determine material parameters: effective 

masses, band offsets, g-factors, scattering 
rates

• Study new phenomena: Bloch oscillations, 
huge optical nonlinearities, BEC of 
excitons, entangled states, …

• Make new devices: lasers, detectors, 
transistors, memory, computers, etc. 

Quantum-confined electron gas has sharp, 
tunable resonances in “optics” (from 
terahertz to visible light)



How to get lasing between intersubband transitions?

Problem: ultrafast relaxation due to phonon emission



En
er

gy
 (

m
eV

)

Superlattice laser: Kazarinov and Suris 1971
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Electric field F = 40 kV/cm

F = 100 kV/cm

Does not work due to 
domain formation and 
insufficient population 
inversion
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Quantum cascade lasers
J. Faist, F. Capasso, et al. Science 264, 553 (1994)

•Control of lifetimes: phonons, tunneling;  need t32 > t2

•Cascading: high power when t_stim approaches T1

From sawtooth to staircase potential

 jbjbjwjw lklk ,,,,E21 = Ephonon



Vertically stack 20-30 stages; sandwich them into 
the waveguide supporting a low-loss transverse 
EM mode
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Mid-infrared ( ~ 4-10 m)
Quantum cascade lasers are

• Extremely powerful (Pmax > 20 W)
• Operate at high temperatures Tmax ~ 100 C
• Reliable, stable, etc.    



Problems with lasers:

• Lasers are not widely tunable, do not cover all 
wavelengths of interest, can operate CW at 
room-T only in the narrow spectral range, 
cryogenic at very short and very long 
wavelengths

• Nonlinear optical sources (OPO etc.) flexible and 
tunable, but they are bulky and expensive

• Is it possible to combine the advantages of both 
types of sources??



Nonlinear Optics

Pump Nonlinear signal

Nonlinear crystal

•Need high-power external laser pump

•Nonlinearity is small in the transparency region

•Bulky and costly lab equipment
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Resonant nonlinear optics with nanostructures

Coupled quantum well structures can be designed to 
have huge resonant optical nonlinearity (known for 30 
years)
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Double resonance:

Resonance in absorption for both pump 
and the nonlinear signal:
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However, these advantages are usually inaccessible …
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All detunings are large:  ~  >> ;

All frequencies are in the transparency 
region of the NLO crystals

• Absorption and nonlinearity are small;
• Need high power pump

Conventional nonlinear optics
4



A way to get around resonant absorpti
Resonant optical nonlinearity is accompanied by 
resonant absorption 
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Active nonlinear medium:

Integration of injection lasers with 
resonant electronic nonlinearities

Laser field serves as a coherent optical 
pump for the nonlinear process

One can approach resonance since 
resonant absorption is compensated 
by laser gain

No problem with external pump; an 
injection-pumped device

2
1

3

4

I.

5

II.

The tightest possible confinement and 
mode purity

We deal with semiconductors 

Let’s try to inject electrons, create 
population inversion and generate the 
optical pump right inside the nonlinear 
structure
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• Maximizing the product of dipoles d23d34d24
• Quantum interference between cascades I and II

Monolithic integration of quantum-cascade lasers 
with resonant optical nonlinearities

This is NOT sequential photon absorption/reemission!

Milliwatt power in SHG: 
O. Malis et al. 2004

Second harmonic generation

(2) ~ 105 pm/V in the mid-IR
(2) ~ 106 pm/V in the THz 



Single-mode and tunable SH emissionSingle-mode and tunable SH emission
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Third Harmonic Generation
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T. Mosely, A. Belyanin, C. Gmachl, Optics Express 12, 2972 (2004)
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Electron 
population1
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• Make a powerful mid-IR QCL emitting at two modes
• Provide strong nonlinearity for frequency mixing process
• Design a low-loss, phase-matched waveguide for all 

three modes
2121 , kkkTHzTHz  

Difference frequency generation in two-wavelength QCLs



• Triply resonant Raman lasing

• Lasing without inversion

• “Slow light”, intersubband polaritons, 
mixing with phonons, plasmons, …

• Beyond semiclassical picture: squeezing, entanglement

• Beyond rate approximation: instabilities, superfluorescence

Raman lasing and other coherent 
nonlinear phenomena
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s-32, meV3

Ep Es
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• Very large detuning  to avoid absorption
• No real transitions to upper state 3
• Raman shift 21 is fixed to be the phonon

frequency

Gain at two-photon resonance: 
p - s = 21

In most Raman amplifiers and lasers, both pump and Raman fields 
are very far from one-photon resonance

p, sp
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Raman inversion

Raman decoherence rate

Propagation of coupled Raman and pump fields

Raman coherence 21 << 1

 ~ s

Stimulated Raman scattering

(Except experiments by Sokolov, Harris et al.)



Approaching resonance
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Both “good” and “bad” effects get enhanced

Real one-photon processes become important

Raman coherence 21 also increases

Raman gain increases strongly

Absorption is increased
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One-photon absorption

“Two-photon” gain
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resonant absorption of the pump 
limits the interaction length
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Mid-IR Raman injection laser
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M. Troccoli, A. Belyanin, F. Capasso, Nature 433, 845 (2005)
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40 mW Raman threshold
16 mW Stokes power

Resonant -scheme
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Very large Raman gain at 
resonance: ~ 10-4 cm/W

Raman shift is determined 
by intersubband transition 
and is tunable


