Turbid tissue optics II: Time-resolved methods &

Instrumentation and measurements

Andrew Berger

Abbe lecture #3 14.01.2014

Roadmap for introductory lecture

$$\mu_{a}$$
 \longleftrightarrow absorption μ_{s}, μ_{s}' \longleftrightarrow scattering L \longleftrightarrow radiance ϕ fluence (energy density)

radiative transport equation
diffusion equation
boundary conditions

reflectance measurements in space and time steady-state

pulsed sinusoidally-modulated

Roadmap for today

review of basic concepts from last time

the Virtual Tissue Simulator

reflectance measurements: three types

steady-state

pulsed

sinusoidally-modulated ("frequency domain")

instrument design considerations

various applications

Reminder: absorption coefficient

Reminder: absorption vs. scattering in the near-infrared

Many more scattering events than absorption events

"Reduced scattering" substitution

Reminder: fluence and reflectance

Reminder: steady-state diffusion equation

Dropping time-dependent terms and assuming an isotropic source yields:

$$-D\nabla^2\Phi(\mathbf{r},t) + \mu_a\Phi(\mathbf{r},t) = S_0(\mathbf{r},t)$$

where
$$D = 1/[3(\mu_a + \mu'_s)]$$

The Green's function for this equation is

$$\Phi_G = \frac{1}{4\pi D} \frac{e^{-\mu_{eff}r}}{r}$$

where $\mu_{\rm eff}$ is the 'effective attenuation coefficient':

$$\mu_{eff} = \left[3\mu_a (\mu_a + \mu_s') \right]^{\frac{1}{2}}$$

Reminder: how to model the sources of scattered light

Reminder: "extrapolated boundary" solution

$$\Phi_{in} = \Phi_{source} + \Phi_{image}$$

$$= \frac{1}{4\pi D} \left(\frac{\exp(-\mu_{eff} r_{source})}{r_{source}} - \frac{\exp(-\mu_{eff} r_{image})}{r_{image}} \right)$$

infinite-boundary Green's function

Roadmap for today

review of basic concepts from last time

the Virtual Tissue Simulator

reflectance measurements: three types

steady-state

pulsed

sinusoidally-modulated ("frequency domain")

instrument design considerations

various applications

Virtual tissue simulator

http://www.virtualphotonics.org/vts/

Roadmap for today

review of basic concepts from last time the Virtual Tissue Simulator

reflectance measurements: three types

steady-state

pulsed

sinusoidally-modulated ("frequency domain")

instrument design considerations

various applications

Time-resolved photon detection: extreme examples

in the limit of:

no scattering

signal at detector decays according to

$$e^{-\mu_{g}ct}$$
 absorption

no absorption

RMS distance from origin ("random walk") increases according to

$$\frac{1}{3(\mu_s) + \mu_a}ct = \sqrt{Dct}$$

$$\frac{\text{diffusion coefficient }}{\text{coefficient }}$$

Reminder: time-resolved photon detection paths

Reminder: the ugly mathematics

Time-resolved radiative transport equation:

$$-D\nabla^{2}\Phi(\mathbf{r},t) + \mu_{a}\Phi(\mathbf{r},t) + \frac{1}{c}\frac{\partial\Phi(\mathbf{r},t)}{\partial t} + \frac{3D}{c}\left[\mu_{a}\frac{\partial\Phi}{\partial t} + \frac{1}{c}\frac{\partial^{2}\Phi}{\partial t^{2}}\right] = S_{0}(\mathbf{r},t) - 3D\nabla\cdot\mathbf{S}_{1}(\mathbf{r},t) + \frac{3D}{c}\frac{\partial S_{0}(\mathbf{r},t)}{\partial t},$$

where D is the optical diffusion coefficient:

$$D = \frac{1}{3(\mu_a + \mu_s(1 - g))}$$

Time-domain

Approximations to the radiative transport equation:

- 1. reduced-scattering similarity:
- 2. scattering dominates over absorption:
- 3. photons scatter many times before next pulse is launched

$$\mu_s' = \mu_s (1 - g)$$

$$\mu_a \ll \mu_{tr}$$

 $\omega_{\rm modulation} << c \mu_{tr}$

.

4. isotropic sources of diffuse light

Leads to the following *time-resolved diffusion equation:*

$$(D\nabla^2 - \mu_a) \Phi - \frac{1}{c} \cdot \frac{\partial \Phi}{\partial t} = -S$$

Infinite geometry Green's function (point source at origin and at t=0):

$$\Phi(\mathbf{r},t) = c(4\pi Dct)^{-3/2} \exp\left(-\frac{r^2}{4Dct} - \mu_a ct\right)$$

Time-resolved measurements

Infinite geometry:
$$\Phi(\mathbf{r},t) = c(4\pi Dct)^{-3/2} \exp\left(-\frac{r^2}{4Dct} - \mu_a ct\right)$$

Time-resolved measurements

Infinite geometry:
$$\Phi(\mathbf{r},t) = c(4\pi Dct)^{-3/2} \exp\left(-\frac{r^2}{4Dct} - \mu_a ct\right)$$
(similar curves for semi-infinite reflectance)

time resolution needed: psec scale; integration time needed: 100's-1000's of psec

Measured reflectance: time-domain

For semi-infinite boundary, use extrapolated boundary condition (as in steady state analysis)

Full expressions for fluence and flux:

$$\Phi(r, z, t) = \frac{c}{(4\pi Dct)^{3/2}} \exp(-\mu_a ct)
\times \left\{ \exp\left[-\frac{(z - z_o)^2 + r^2}{4Dct}\right] - \exp\left[-\frac{(z + z_o + 2z_b)^2 + r^2}{4Dct}\right] \right\}$$

$$R_f = \frac{1}{2} (4\pi Dc)^{-3/2} t^{-5/2} \exp\left(-\mu_a ct\right) \left[z_o \exp\left(-\frac{r_s^2}{4Dct}\right) + (z_o + 2z_b) \exp\left(-\frac{r_i^2}{4Dct}\right) \right]$$

Formula for measured reflectance (particular case of index mismatch 1.0/1.4):

$$R = 0.118\Phi + 0.306R_f$$

A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium," JOSA A 14(1), 246-254 (1997).

R. C. Haskell et al., "Boundary conditions for the diffusion equation in radiative transfer," JOSA A 11(10), 2727-2741 (1994).

Time-resolved data

Larger distance: "smoother" time response

Roadmap for today

review of basic concepts from last time the Virtual Tissue Simulator

reflectance measurements: three types

steady-state

pulsed

sinusoidally-modulated ("frequency domain")

instrument design considerations

various applications

Frequency domain diffusion

Frequency domain diffusion

Frequency-resolved

The observables:

Frequency-domain diffusion

Time-dependent diffusion equation, as before:

$$(D\nabla^2 - \mu_a) \Phi - \frac{1}{c} \cdot \frac{\partial \Phi}{\partial t} = -S$$

Oscillating source term (photon density wave):

$$S = S_o[1 + A \exp{(-i\omega t)}]\delta(\vec{r})$$

"DC" term

"AC" term

(complex notation)

Frequency domain: theory

Assert that the solution takes the form

$$\Phi = \Phi_{DC} + \Phi_{AC} \exp(-i\omega t)$$

Diffusion equation becomes separable:

$$(D\nabla^2 - \mu_a) \Phi_{DC} = -S_o \delta(\vec{r})$$

$$\left[D\nabla^2 - (\mu_a - i\omega/c)\right]\Phi_{AC} = -AS_o\delta(\vec{r})$$

"effective" absorption coefficient: frequency-dependent and complex!

$$1/\mu_a$$
 \longleftrightarrow absorption m.f.p. c/ω "wave blurring" m.f.p.

Frequency domain Green's functions

Green's functions, point source in an infinite medium:

$$\Phi_{DC} = \frac{S}{4\pi Dr} \exp\left(-r\sqrt{\mu_a/D}\right)$$

$$\Phi_{AC} = \frac{AS}{4\pi Dr} \exp \left[-r\sqrt{\left(\mu_a - \frac{i\omega}{c}\right)/D} \right]$$

As in time domain, use extrapolated boundary condition to determine measured reflectance emerging from the surface

Frequency domain Green's functions

decay factor

Rewrite AC solution as:

Rewrite AC solution as:
$$\Phi_{AC} \exp\left(-i\omega t\right) = \frac{AS}{4\pi D} \cdot \frac{\exp\left(-\kappa r\right)}{r} \cdot \exp\left[i(kr - \omega t)\right]$$

magnitude

where

$$(\kappa - ik)^2 = (\mu_a - i\omega/c)/D = \mu_{\text{eff}}^2 (1 - i\omega/\mu_a c)$$

- propagation speed of photon density wavefronts is ω/k
- "speed" means phase advance; there is not a local maximum of photon density

phase relative to the point source modulation

imaginary term is significant when photons "survive" for more than one oscillation period

Photon density waves do not have local maxima in *space*!

$$\Phi(\mathbf{r},t) = c(4\pi Dct)^{-3/2} \exp\left(-\frac{r^2}{4Dct} - \mu_a ct\right)$$

Frequency domain

Solutions for real and imaginary exponential coefficients:

$$\kappa^{2} = \mu_{\text{eff}}^{2} \left[\frac{\sqrt{1 + (\omega/\mu_{a}c)^{2}} + 1}{2} \right]$$

$$k^{2} = \mu_{\text{eff}}^{2} \left[\frac{\sqrt{1 + (\omega/\mu_{a}c)^{2}} - 1}{2} \right]$$

- K (kappa) larger at high frequencies:
- *k* scales as ω at low frequencies:
- k scales as $\omega^{1/2}$ at high frequencies: $v=\omega/k$ gets larger

greater attenuation

 $v=\omega/k$ is constant

Frequency-dependent wave properties: i.e, dispersion!

Velocity of photon density "waves"

Therefore, the measured phase shift depends upon the optical properties of the medium

Validity of photon density wave picture

if only a few collisions occur during a source modulation cycle, diffusion model does not approximate reality (>10 GHz)

if photons "survive" for only a few oscillation cycles, AC effects are no different from DC effects (<10 MHz)

Frequency domain

Ways to make measurements:

- 1) phase and/or amplitude vs. distance
- 2) phase and/or amplitude vs. frequency

Roadmap for today

review of basic concepts from last time

the Virtual Tissue Simulator

reflectance measurements: three types

steady-state

pulsed

sinusoidally-modulated ("frequency domain")

Basic instrumentation for all cases

Steady state ("CW") + spectrometer

broadband source (lamp)

 \sim 250 μ W/10nm spectrograph array detector delivery fiber (e.g. CCD) (multimode, e.g. 100 microns)

Spectrographic CCD display

fiber image:
$$\frac{150\,\mu\text{m}}{\text{fiber}} \cdot \frac{1\,\text{pixel}}{25\,\mu\text{m}} = 6\,\text{pixels/fiber}$$

integration time: 10's of seconds

➤ \(\lambda\)

calibration: shine equal light into all channels

Steady state reflectance data

Need to measure both "near" and "far"

dominated by scattering (D)

$$\Phi(\rho) = \frac{1}{4\pi D} \left(\frac{\exp(-\mu_{eff} r_1(\rho))}{r_1(\rho)} - \frac{\exp(-\mu_{eff} r_2(\rho))}{r_2(\rho)} \right)$$

Linear probe for in vivo diffuse reflectance spectroscopy

Seeing blood oxygenation change

when rat is breathing 95% O₂

Figure 2 Near infrared absorption spectra of deoxy- (—) and oxyhaemoglobin (---). The oxyhaemoglobin spectrum is from Wray et al (1988); the deoxyhaemoglobin spectrum is from Matcher et al (1995)

Hull et al., *Br. J. Cancer*, **79**(11/12), 1709-1716 (1999).