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Roadmap for introductory lecture 
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Reminder: absorption coefficient 
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Reminder: absorption vs. scattering in the near-infrared 

Many more scattering events than absorption events 

scattering length << absorption length ms         >>              ma 
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“Reduced scattering” substitution 
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Reduced-scattering coefficient: 



Reminder: fluence and reflectance 

photons in 

mean free path photon out 
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Reminder: steady-state diffusion equation 
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Dropping time-dependent terms and assuming an isotropic source 
yields: 

The Green’s function for this equation is 
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where meff is the ‘effective attenuation coefficient’: 

where 



Reminder: how to model the sources of scattered light 
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T.J. Farrell et al., “A diffusion theory model 

of spatially-resolved, steady-state diffuse 

reflectance for the noninvasive 

determination of tissue optical properties in 

vivo,” Med. Phys. 19:879-888 (1992).  
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Reminder: “extrapolated boundary” solution 
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Virtual tissue simulator 

• http://www.virtualphotonics.org/vts/ 
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Time-resolved photon detection: extreme examples 
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Reminder: time-resolved photon detection paths 

light in light out 



Reminder: the ugly mathematics 
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Time-resolved radiative transport equation: 

where D is the optical diffusion coefficient: 
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Time-domain 

Infinite geometry Green’s function (point source at origin and at t=0): 

Leads to the following time-resolved diffusion equation: 

Approximations to the radiative transport equation:  

1.  reduced-scattering similarity:     

2.  scattering dominates over absorption:    

3.  photons scatter many times before next pulse 

is launched     

4.  isotropic sources of diffuse light 

 gss  1mm

tra mm 

trcm modulation



Time-resolved measurements 

t t=0 

R(r,t) 

pulse at t=0 remitted light at t > 0 

absorption and scattering 

r 

Infinite geometry:  

tballistic 



Time-resolved measurements 

Infinite geometry:  

15 mm 

25 mm 

35 mm 

(similar curves for semi-infinite reflectance) 

different source-detector separations normalized 

time resolution needed: psec scale;   integration time needed: 100's-1000’s of psec 

r = 15 mm 

25 mm 

35 mm 

ma  = 0.006 mm-1 

ms' = 1 mm-1 

n = 1.4 



Measured reflectance: time-domain 

Full expressions for fluence and flux: 

Formula for measured reflectance (particular case of index mismatch 1.0/1.4): 

For semi-infinite boundary, use 
extrapolated boundary condition (as 
  in steady state analysis) 

A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion 

equations for reflectance from a semi-infinite turbid medium,” JOSA A 14(1), 246-254 (1997). 

R. C. Haskell et al., “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11(10), 2727-

2741 (1994). 
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Time-resolved data 

fit to semi-infinite theory (or match to Monte Carlo) 

to extract D and ma (2-parameter fit) 



Larger distance: “smoother” time response 
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Frequency domain diffusion 
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Frequency domain diffusion 

 (, r1) 

tissue 

50 MHz - 1000 MHz 

Amplitude 

modulation 

amplitude modulated 

 source 

detected intensity 



Frequency-resolved 

The observables: 

DC 

AC 

reference 

modulation 

detected signal 

f 



Frequency-domain diffusion 

Time-dependent diffusion equation, as before: 

Oscillating source term (photon density wave): 

“AC” term 

(complex notation) 

“DC” term 
point source 

at the origin 



Frequency domain: theory 

Assert that the solution takes the form 

Diffusion equation becomes separable: 

“effective” absorption 

coefficient: frequency-

dependent and complex! 

am1

c

absorption m.f.p. 

“wave blurring” m.f.p. 



Frequency domain Green’s functions 

Green’s functions, point source in an infinite medium: 

As in time domain, use extrapolated boundary condition to 

determine measured reflectance emerging from the surface 



Frequency domain Green’s functions 

Rewrite AC solution as: 

where  

magnitude phase relative 

to the point 

source 

modulation 

• propagation speed of 

photon density wavefronts is 

/k 

• “speed” means phase 

advance; there is not a local 

maximum of photon density 

decay factor 

imaginary term 

is significant 

when photons 

“survive” for 

more than one 

oscillation 

period 



Photon density waves do not have  

local maxima in space! 
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Frequency domain 

Solutions for real and imaginary exponential coefficients: 

• K (kappa) larger at high frequencies:  greater attenuation 

• k scales as  at low frequencies:  v=/k is constant 

• k scales as 1/2 at high frequencies:  v=/k gets larger  

 



Frequency-dependent wave properties: i.e, dispersion! 

ma = 0.006 mm-1 

ms’ = 1 mm-1 

n = 1.4 

decay factor 

propagation factor 



Velocity of photon density “waves” 

ma = 0.006 mm-1 

ms’ = 1 mm-1 

n = 1.4 

about 1/10 the speed of light 



Therefore, the measured phase shift depends upon the 

optical properties of the medium 

ma = 0.006 mm-1 

ms’ = 1 mm-1 

n = 1.4 

r = 20 mm 



Validity of photon density wave picture 

amplitude 

modulated 

source 

photon density 

“wavelength” = 

distance between 

isophase surfaces 

differing by 2 

typical photon’s 

random walk: 

time between collisions is (ms'c)-1  

characteristic decay 

time is (mac )-1  

if only a few collisions occur during a 

source modulation cycle, diffusion model  

does not approximate reality (>10 GHz) 

 

if photons “survive” for only a few 

oscillation cycles, AC effects are no 

different from DC effects (<10 

MHz) 



Frequency domain 

Ways to make measurements: 

 

1) phase and/or amplitude vs. distance 

2) phase and/or amplitude vs. frequency 
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Basic instrumentation for all cases 

Near-IR 

light source(s) 

Detector(s) PC 

calculated optical properties 
tissue 

biochemical information 

clinical decisions 



Steady state (“CW”) + spectrometer 

spectrograph 

tissue 

broadband source (lamp) 

array 

detector 

(e.g. 

CCD) 

~250 mW/10nm 

delivery fiber 

(multimode, 

  e.g. 100 microns) 

r 



Spectrographic CCD display 

r 

l 

integration time: 10’s of seconds 

calibration: shine equal light into all channels 

few 

100’s 

of  

pixels 



Steady state reflectance data 

R 

(arb. 

 units) 

• optimize fit to steady-state theory 

and to obtain 

• repeat for all wavelengths  

(e.g. Levenberg-Marquardt) 



Need to measure both “near” and “far”  
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Linear probe for in vivo diffuse reflectance spectroscopy 

Hull et al., “Carbogen-induced changes in 

rat mammary tumour 

oxygenation reported by near infrared 

spectroscopy,” Br. J. Cancer , 79(11/12), 

1709-1716 (1999). 

1-20 mm separation 



Seeing blood oxygenation change 

when rat is breathing 95% O2 

normal air 

Hull et al., Br. J. Cancer , 79(11/12), 

1709-1716 (1999). 


