A different view of turbidity: Elastic scattering analysis

Andrew Berger

Abbe lecture #5

28.01.2014

Road map for today

Why scattering (as opposed to absorption)?

Scattering you may have already heard about

Fundamentals of elastic scattering

wavelength-resolved angularly-resolved

Experiments and applications

spectral domain angular domain

Size-dependent elastic scattering

Size-dependent elastic scattering

Size-dependent elastic scattering

sphere: angle-dependent resonance

Sensitivity to organelle size

Road map for today

Why scattering (as opposed to absorption)?

Scattering you may have already heard about

Fundamentals of elastic scattering

wavelength-resolved angularly-resolved

Experiments and applications

spectral domain angular domain

Flow cytometry

Tutorial on forward and side scatter for flow cytometry:

http://media.invitrogen.com.edgesuite.net/tutorials/4Intro_Flow/player.html

Comment:

Larger cells are typically more strongly forwardpeaked, in addition to scattering more overall.

Mie theory in single-cell FT-IR spectroscopy

A. Kohler et al., "Estimating and Correcting Mie Scattering in Synchrotron-Based Microscopic Fourier Transform Infrared Spectra by Extended Multiplicative Signal Correction," Applied Spectroscopy **62**(3), 259-266 (2008)

Mie theory in single-cell FT-IR spectroscopy

A. Kohler et al., "Estimating and Correcting Mie Scattering in Synchrotron-Based Microscopic Fourier Transform Infrared Spectra by Extended Multiplicative Signal Correction," Applied Spectroscopy **62**(3), 259-266 (2008)

Mie theory in single-cell FT-IR spectroscopy

A. Kohler et al., "Estimating and Correcting Mie Scattering in Synchrotron-Based Microscopic Fourier Transform Infrared Spectra by Extended Multiplicative Signal Correction," Applied Spectroscopy **62**(3), 259-266 (2008)

Road map for today

Why scattering (as opposed to absorption)?

Scattering you may have already heard about

wavelength-resolved angularly-resolved

Experiments and applications

spectral domain angular domain

Spectral dependence of scattering

• d=5 microns

• $n_1 = 1.36$

• $n_2/n_1 = 1.06$

Scattering spectroscopy

- spacing of peaks:
- depth of modulation:

size of scatterer

number of such scatterers

mixture

superposition of spectra

MiePlot program: calculation of scatter patterns

Road map for today

Why scattering (as opposed to absorption)?

Scattering you may have already heard about

Fundamentals of elastic scattering

wavelength-resolved angularly-resolved

Experiments and applications

spectral domain angular domain

Spectroscopic light scattering system

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 5, NO. 4, JULY/AUGUST 1999

Polarized Light Scattering Spectroscopy for Quantitative Measurement of Epithelial Cellular Structures In Situ multichannel spectroscope Vadim Backman, Rajan Gurjar, Kamran Badizadegan, Irving Itzkan, Ramachandra R. Dasari, Lev T. Perelman, and Michael S. Feld beam splitting broad-band polarizer polarization source analyzer turbid samole

Fig. 1. Schematic diagram of polarization LSS system.

Scattering spectroscopy

broadband polarized illumination

Perelman et al., Phys Rev Lett 80:627 (1998) and following.

Method reports on pre-cancerous, subcellular alterations

Scattering spectroscopy

Backman et al., *IEEE J. Sel. Top. Quant. Electr.* **5(4):**1019-1026.

Method reports on pre-cancerous, subcellular alterations

The polarization/surface "trick"

once-scattered light: retains polarization

many-times scattered light: "forgets" polarization

$$S_{par} = (1/2)S_{diffuse} + S_{surface}$$

 $S_{per} = (1/2)S_{diffuse}$

Difference signal is mostly superficial in origin

Scattering spectroscopy

broadband polarized illumination

Backman et al., IEEE J. Sel. Top. Quant. Electr. 5(4):1019-1026.

Method reports on pre-cancerous, subcellular alterations

Good agreement for bead layers placed above absorbing/scattering substrates

4.65 micron beads in water, n=1.19

9.5 micron beads in water, n=1.19

Different nuclear sizes = different scattering vs. wavelength

Size distributions correctly estimated!

Scattering spectroscopy

broadband polarized illumination

Backman et al., *IEEE J. Sel. Top. Quant. Electr.* **5(4):**1019-1026.

Method reports on pre-cancerous, subcellular alterations

Scattering spectroscopy

broadband polarized illumination

Backman et al., *IEEE J. Sel. Top. Quant. Electr.* **5(4):**1019-1026.

Method reports on pre-cancerous, subcellular alterations

Using light scattering to detect early cancerous transformations

Fig. 2. Development process of rat-carcinogenesis model.

Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy

John W. Pyhtila, Jeffrey D. Boyer, Kevin J. Chalut, and Adam Wax

Department of Biomedical Engineering and the Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, North Carolina 27708

772 OPTICS LETTERS / Vol. 31, No. 6 / March 15, 2006

Angle-resolved scattering, combined with low-coherence depth ranging

Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy

John W. Pyhtila, Jeffrey D. Boyer, Kevin J. Chalut, and Adam Wax

Department of Biomedical Engineering and the Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, North Carolina 27708

772 OPTICS LETTERS / Vol. 31, No. 6 / March 15, 2006

Angle-resolved scattering, combined with low-coherence depth ranging

Measuring at different depths

Measuring at different depths

Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy

John W. Pyhtifia, Jeffrey D. Boyer, Kevin J. Chalut, and Adam Wax.

Department of Himsediand Engineering and the Phytotick Genter for Phytotics and Communication Systems.

Bullet University Department of Phytotics and Communication Systems.

Clinical instrument for Barrett's esophagus

Terry et al., "Detection of Dysplasia in Barrett's Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements," Gastroenterology **140**(1), pp. 42–50 (2011).

Barrett's Esophagus

http://pathology2.jhu.edu/beweb/Definition.cfm

Clinical instrument for Barrett's esophagus

key region: 200-300 um below surface

Terry et al., "Detection of Dysplasia in Barrett's Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements," Gastroenterology **140**(1), pp. 42–50 (2011).

Agreement with pathology

Terry et al., "Detection of Dysplasia in Barrett's Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements," Gastroenterology **140**(1), pp. 42–50 (2011).

Wavelength-resolved elastic scattering

Qiu et al., "Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus," Nature Med., **16**(5), 603-607 (2010)

Details of esophageal probe

Qiu et al., "Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus," Nature Med., **16**(5), 603-607 (2010)

Wavelength data from esophagus

Qiu et al., "Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus," Nature Med., **16**(5), 603-607 (2010)

Video from data acquisition procedure

Qiu et al., "Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus," Nature Med., **16**(5), 603-607 (2010)

Esophageal maps

Qiu et al., "Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus," Nature Med., **16**(5), 603-607 (2010)

Esophageal maps

Qiu et al., "Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus," Nature Med., **16**(5), 603-607 (2010)

Angular AND spectral information at once!

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 2, MARCH/APRIL 2003

243

Simultaneous Measurement of Angular and Spectral Properties of Light Scattering for Characterization of Tissue Microarchitecture and Its Alteration in Early Precancer

Young L. Kim, Yang Liu, Ramesh K. Wali, Hemant K. Roy, Michael J. Goldberg, Alexey K. Kromin, Kun Chen, and Vadim Backman

Angular and Raman at once!

Recording the angular pattern

Angle Mapped to Position

I(x,y) in Fourier plane = $I(\theta,\phi)$ in object plane

Unstimulated

Flow cytometry comparison...

Flow cytometry

IRAM analysis

Unstimulated

Unstimulated

Stimulated

Flow cytometry (gold standard)

Smith et al., J. Biomed. Opt., <u>15(3)</u>, 036021 (June 2010).

Summary: single-cell organelle sizing

Road map for today

Why scattering (as opposed to absorption)?

Scattering you may have already heard about

Fundamentals of elastic scattering

wavelength-resolved angularly-resolved

Experiments and applications

spectral domain angular domain

Review of lectures

Tuesdays in January (7.1, 14.1, 21.1, 28.1), 2:00 pm, IPHT Sitzungssaal

```
Lecture 2 - Turbid tissue optics I: Introduction
```

Lecture 3 - Turbid tissue optics II: *Instrumentation and measurements*

Lecture 4 - Turbid tissue optics III: (More) Applications

Lecture 5 - A different view of turbidity: *elastic scattering* analysis

Thank you very much!