Medical adventures in the near-infrared

Andrew Berger Abbe lecture #1: Research 17 Dezember 2013

Welcome to the near-infrared Measuring mouse bone quality Sensing organelle size distributions Sensing blood activity in the brain

The Institute of Optics, Rochester NY

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY & ROCHESTER

Welcome to the near-infrared

Measuring mouse bone quality

Sensing organelle size distributions

Sensing blood activity in the brain

Near infrared photons

phineasandferb.wikia.com/wiki/Where%27s_My_Perry

NIR photon

biomedical spy

The near-infrared "window"

UNIVERSITY # ROCHESTER

Optical Penetration Depth vs. Wavelength

Going below the surface

Hemoglobin

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

UNIVERSITY of ROCHESTER

Chemical sensing: Raman scattering

Size-dependent elastic scattering

resonant wavelengths "tunnel through"

Size-dependent elastic scattering

Size-dependent elastic scattering

sphere: angle-dependent resonance

Sensitivity to organelle size

http://biosci.ucdavis.edu/faculty_spotlight/starr.html

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY & ROCHESTER

Photon diffusion

0

The biomedical optics "banana"!

Summary of NIR interactions

UNIVERSITY & ROCHESTER

Welcome to the near-infrared

Measuring mouse bone quality

Sensing organelle size distributions

Sensing blood activity in the brain

SITY of ROCHESTER

Motivation

clientuploads/osteoporosis3.jpg

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY # ROCHESTER

Bone mineral density (BMD)

- Prior to pathologic fracture, BMD test to diagnose osteoporosis
 - Dual energy X-ray absorr ometry (DXA)
 - most wid
 validated
 BMD alone is a
 fracture
 poor predictor of
 fracture risk
 - Quantitative
 - m te om raphy
 - more expensive, her radiation dose, but provides
 Need better "bone quality" assessment:
 - both *structure* and *chemical composition*

http://www.carrollarthritis.com/dxa.html

Did somebody say "chemical"??

Raman spectrum of bone

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY of ROCHESTER

Trends in the Raman spectra

Bone-by-bone: Raman predicts bone strength

(I) (I)

But how about this....

Spectral similarity of bone and soft tissue

Transcutaneous spectrum: ambiguous

Raman intensity / a.u

Vary distance to vary depth sensing

Summary of NIR interactions

🗿 UNIVERSITY 🖉 ROCHESTER

Putting diffusion to work!

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY & ROCHESTER

Layered model of soft tissue and bone

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

NIVERSITY & ROCHESTER

Simultaneous, overconstrained, librarybased decomposition (SOLD)

UNIVERSITY # ROCHESTER

N=21 mice (including 4 oim/oim and 4 WT littermates)

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY # ROCHESTER

Raman spectroscopy system

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

UNIVERSITY of **ROCHESTER**

Spatially offset Raman spectroscopy (SORS)

• : illumination spot

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

Estimating the correct bone spectrum

Diagnostically-sensitive transcutaneous measurements

- Intact mice measured at midshaft of tibia
- Wild-type (WT) mice and mouse models of osteogenesis imperfecta (OI) and rheumatoid arthritis (N = 21 total mice)
- Mineral/matrix ratio estimated by SOLD completely separates WT and OI mice

Most robust measurement of mineral to matrix ratio

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

Summary: bone work

Multiple source-detector separations: essential for determining mineral-tomatrix ratio of bone transcutaneously SOLD processing

Y of ROCHESTER

Dustin Shipp

Welcome to the near-infrared

Measuring mouse bone quality

Sensing organelle size distributions

Sensing blood activity in the brain

Zachary Smith

Motivation: study T-cell activation

Motivation: studying cells without labeling

• Single cell versus time

Starting point: Raman spectum of immune cell

Raman Microscope

At the Dichroic Beamsplitter

Recording the angular pattern

Angle Mapped to Position

I(x,y) in Fourier plane = $I(\theta,\phi)$ in object plane

Summary of NIR interactions

UNIVERSITY & ROCHESTER

Combining two scattering modalities

Scattergrams specify size

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY of ROCHESTER slide 53/26

Sensing of slight size changes

But organelles are not spheres!

Backward scattering highly sensitive to shape and orientation

Forward scattering insensitive to shape and orientation

System test: sizing a single bead

excitation

Forward vs. backward (epi) mode

Experiment

а

epi-mode

d

forward

Single populations sized accurately

Manufacturer's Specification		IRAM extraction	
mean diameter (nm)	standard deviation (nm)	mean diameter (nm)	standard deviation (nm)
330	10	321	3
500	15	526	5
820	16	806	9
1000	30	988	50

Two-population mixtures

Approximating distributions in a cell

P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell and Tissue Research 234, 469 – 496 (1983).

Lymphocytes vs. Granulocytes

CD8⁺ T-cell Activation

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

UNIVERSITY of ROCHESTER

slide 69/26

Unstimulated

Stimulated

T-Cell Activation (Raman)

T-Cell Activation (Elastic)

•

SEB T-Cell Activation (IRAM Index)

Flow cytometry comparison...

Flow cytometry

IRAM analysis

Guess the activated cells

Stimulated

Unstimulated

Stimulated

UNIVERSITY of ROCHESTER

Stimulated

Flow cytometry (gold standard)

Smith et al., J. Biomed. Opt., <u>15(</u>3), 036021 (June 2010).

Speckle from single immune cells

00 (

UNIVERSITY of ROCHESTER

Current challenges: speckle

Speckle reduction

Summary: single-cell organelle sizing

UNIVERSITY OF ROCHESTER
James Goodwin

Welcome to the near-infrared

Measuring mouse bone quality

Sensing organelle size distributions

Sensing blood activity in the brain

hearing

motor/sensory

vision

speech

Infant cerebral studies

Diffuse reflectance geometry

The basic geometry

light in (690, 830 nm)

Stormu Sciennoic

Summary of NIR interactions

The Institute of

Hemoglobin sanity check: Pressure cuff data

Noninvasive monitoring of hemodynamics

optical power measurements

oxy and deoxy hemoglobin concentration changes

Typical measurements

Why especially for infants?

- small scale
- thin-skulled
- twitchy
- uncommunicative
- lots of developmental questions to ask

Single subject countdown timecourse

Single subject, block average

oxyhemoglobin deoxyhemoglobin

Typical headpiece for adults

optical fiber bundles

Second Nearest Neighbors 3 cm Third Nearest Neighbors 3.9 cm

Visual Stimulation Protocol

 6 stimulus periods of pattern reversal at 10 Hz
based upon code by Brian White and Joseph Culver, Washington University (St. Louis)

Example of a Stimulus

Example of a Stimulus

Hemodynamic response to stimulus

Problem: not all blood is in the brain!

optical power measurements

oxy and deoxy hemoglobin concentration changes

The optical geometry

A real head

Cerebral hemodynamics

Problem: not all blood is in the brain!

Saager et al., NeuroImage 55(4), 1679--1685 (April 2011)

ROCHESTER

fNIRS measurement sensitive to both cortical and superficial hemodynamics Want to isolate brainspecific trends

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

Summary of NIR interactions

Explicit superficial monitoring

- least-squares residual
- uncorrelated with "near" trend
- C-NIRS, or
 - "Corrected NIRS"

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY & ROCHESTER

Improving signal-to-noise by subtracting "scalp" signal

contrast and noise amplitudes

NIVERSITY & ROCHESTER

6 mm correction vs. no correction

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

ERSITY of ROCHESTER

Comparing two "near" distances

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

IVERSITY & ROCHESTER

Ongoing work: babies!

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES

JNIVERSITY & ROCHESTER

Conclusion

UNIVERSITY of ROCHESTER

Tuesdays in January (7.1, 14.1, 21.1, 28.1), 2:00 pm, IPHT Sitzungssaal

Lecture 2 - Turbid tissue optics I: Introduction Lecture 3 - Turbid tissue optics II: Instrumentation and measurements Lecture 4 - Turbid tissue optics III: Applications Lecture 5 - A different view of turbidity: elastic scattering analysis

Support from: National Institutes of Health, National Science Foundation, UR Provost's Multidisciplinary Fund

