Turbid tissue optics I: Introduction

> Andrew Berger Abbe lecture #2 07.01.2014

Propagation of light in scattering vs. nonscattering media

no scattering

scattering

courtesy F. Bevilacqua

Photon diffusion

HAJIM SCHOOL OF ENGINEERING & APPLIED SCIENCES UNIVERSITY # ROCHESTER

The biomedical optics "banana"!

Roadmap for today

radiative transport equation diffusion equation

boundary conditions

reflectance measurements in space and time

steady-state pulsed sinusoidally-modulated

Roadmap for today

radiative transport equation diffusion equation

boundary conditions

reflectance measurements in space and time

steady-state pulsed sinusoidally-modulated

Introduction to biological absorption

Absorption = molecular transition between states

- electronic
- vibrational
- rotational
- (translational)

How to talk about absorption

What's absorbing

courtesy V. Venugopalan, http://www.osa.org/meetings/archives/2004/BIOMED/program/#educ

Important tissue absorbers in the visible and nearinfrared spectral regions: Skin

Typical tissue absorption!

Hemoglobin

at isosbestic point,

 $\mu_a = 0.023 \,\text{mM} \cdot 0.09 \,\text{mm}^{-1} / \,\text{mM} = 0.002 \,\text{mm}^{-1}$ Mean free absorption pathlength = 500 mm (!)

Hemodynamics calculations

single absorber :

two absorbers :

parameters of interest :

oxygen saturation:

absorption

coefficients

 $\frac{[HbO_2]}{[Hb]+[HbO_2]}$ $[Hb]+|HbO_2|$ total hemoglobin

coefficients (e.g.

http:/omlc.ogi.edu)

theory works for N>2chromophores, too!

concentrations

Roadmap for today

radiative transport equation diffusion equation

boundary conditions

reflectance measurements in space and time

steady-state pulsed sinusoidally-modulated

Tissue is highly scattering!

no scattering

scattering

courtesy F. Bevilacqua

Scattering coefficient (μ_s): inverse of the average straight-line path a photon travels before scattering

Monte Carlo simulation of a photon trajectory with $\mu_s = 0.7 \text{ mm}^{-1}$

Distribution of all straight-line path lengths for this simulation

Scattering of light is caused by index of refraction variations

J.M. Schmitt and G. Kumar, "Optical properties of soft tissue: a discrete particle model," Appl. Opt.37:2788-2797 (1998)

Elastic scattering

• caused by variations in refractive index

component	<i>typical</i> n <i>in the vis/NIR</i>
extracellular fluid	1.35 - 1.36
cytoplasm	1.36 - 1.375
nucleus	1.38 - 1.41
mitochondria	1.38 - 1.41
water	1.33

Drezek et al., <u>Appl. Opt</u>. **38**:16, 3651-3661 (1999).

• various approaches to modeling:

full rigor	Maxwell's equations (e.g. Drezek above)
Mie theory	plane wave on homogeneous sphere
	(e.g., code at philiplaven.com)
van de Hulst	three-term approximation to Mie (larger spheres
	and modest n values)
Rayleigh scattering	very small particles (compared to λ)

Summary: Important sources of scattering in tissue

Figure by Steve Jacques, Oregon Medical Laser Center http://www.omlc.ogi.edu/classroom

The photon scattering angle is governed by the scattering phase function, $p(\theta)$

Isotropic scattering phase function

$$\cos(\theta) = g = 0$$

'Forward scattering' phase function (Typical of tissue) $\cos(\theta) = g = 0.9$

Mie scattering theory can be used to compute the phase function for spherical scatterers

The shape of the phase function depends on a number of factors:

- o Wavelength of light
- o Size of scatterer
- o Index of refraction mismatch
- o Polarization state of the light

Angle-resolved light scattering from microspheres

Different cells = different scattering

Absorption vs. scattering in the near-infrared

Many more scattering events than absorption events

Separating the effects of absorption and scattering: nicht einfach, aber nicht unmöglich!

5 1015 Depth (mm) 0

-1

-2

-3

-4

-5

Monte Carlo simulation of buried point source in a scattering and absorbing medium

- $\mu_s = 1.0 \text{ mm}^{-1}$
- g=0.9
- $\mu_a = 0.01 \text{ mm}^{-1}$
- n_{rel} = 1.4
- Isotropic emitter

Contours connect points of constant energy density

?? How to derive this mathematically??

Roadmap for today

radiative transport equation diffusion equation boundary conditions

reflectance measurements in space and time

steady-state pulsed sinusoidally-modulated

Central quantity: RADIANCE

Radiative Transport Equation: "conservation of radiance"

$$\frac{1}{c} \frac{\partial L(\mathbf{r}, \hat{\mathbf{s}}, t)}{\partial t} = -\nabla \cdot L(\mathbf{r}, \hat{\mathbf{s}}, t) \hat{\mathbf{s}} - \mu_t L(\mathbf{r}, \hat{\mathbf{s}}, t) + \mu_s \int_{4\pi} L(\mathbf{r}, \hat{\mathbf{s}}, t) p(\cos^{-1}(\hat{\mathbf{s}} \cdot \hat{\mathbf{s}}')) d\Omega + S(\mathbf{r}, \hat{\mathbf{s}}, t)$$

- μ_t = total interaction coefficient = $\mu_a + \mu_s$ [mm⁻¹]
 - **\$** = observation direction

 $L = radiance [W mm^{-2} sr^{-1}]$

- $p(\theta) = scattering phase function [-]$
 - S = contribution from sources [W mm⁻³ sr⁻¹]

Radiative Transport Equation: "conservation of radiance"

$$\frac{1}{c}\frac{\partial L(\mathbf{r},\hat{\mathbf{s}},t)}{\partial t} = -\nabla \cdot L(\mathbf{r},\hat{\mathbf{s}},t)\hat{\mathbf{s}} - (\mu_a + \mu_s)L(\mathbf{r},\hat{\mathbf{s}},t) + \mu_s \int_{4\pi} L(\mathbf{r},\hat{\mathbf{s}},t) p(\cos^{-1}(\hat{\mathbf{s}}\cdot\hat{\mathbf{s}}'))d\Omega + S(\mathbf{r},\hat{\mathbf{s}},t)$$

The rate of change of the radiance is governed by

- Losses from divergence (spreading out) within d³x
- Losses from absorption in element d³x
- Losses from scattering out of d³x
- Gains from scattering into d³x
- Gains from sources

Roadmap for today

radiative transport equation diffusion equation boundary conditions

reflectance measurements in space and time

steady-state pulsed sinusoidally-modulated

Getting to a diffusion equation

Define "fluence" as radiance integrated over all directions \hat{s} :

$$\phi(\mathbf{r},t) = \int_{4\pi} L(\mathbf{r},\hat{\mathbf{s}},t)d\Omega$$

[units are power/area] $\left[\phi / c = \text{energy density} \right]$

When we integrate the radiative transfer equation over all directions...

$$\frac{1}{c} \frac{\partial L(\mathbf{r}, \hat{\mathbf{s}}, t)}{\partial t} = -\nabla \cdot L(\mathbf{r}, \hat{\mathbf{s}}, t) \hat{\mathbf{s}} \longrightarrow \text{divergence of the fluence} \text{(more divergent = more loss)}$$

$$rate of increase of the local fluence -(\mu_a + \mu_s)L(\mathbf{r}, \hat{\mathbf{s}}, t) \qquad \text{net absorption, in-scatter, and out-scatter from all directions} + \mu_s \int_{4\pi} L(\mathbf{r}, \hat{\mathbf{s}}, t) p(\cos^{-1}(\hat{\mathbf{s}} \cdot \hat{\mathbf{s}}')) d\Omega$$

$$+ S(\mathbf{r}, \hat{\mathbf{s}}, t) \longrightarrow \text{total contribution} \text{from sources}$$

Result: the time-dependent diffusion equation

$$\frac{1}{c}\frac{\partial}{\partial t}\Phi(\mathbf{r},t) = D\nabla^2\Phi(\mathbf{r},t) - \mu_a\Phi(\mathbf{r},t) + S(\mathbf{r},t)$$

- D = Diffusion coefficient [mm] (to be defined soon)
- Φ = Optical 'fluence' (integration of radiance)
- S = Source term [W mm⁻³] (integration of emission sources; isotropic emission assumed)

How did those integrals in the previous slide get simplified so much?

A " 4π " detector samples the optical fluence

Assumption 1: radiance and source terms are the sum of an isotropic term and a (weak) cosine term

Mathematically: Taylor expansions for *L* and *S*, truncated after two terms.

$$S(\mathbf{r}, \hat{s}, t) = \frac{1}{4\pi} S_0(\mathbf{r}, t) + \frac{3}{4\pi} \mathbf{S}_1(\mathbf{r}, t) \cdot \hat{s}$$

Assumption 2: simplified scattering-angle probability distribution

What happens when we integrate

Define "fluence" as radiance integrated over all directions \hat{s} :

$$\phi(\mathbf{r},t) = \int_{4\pi} L(\mathbf{r},\hat{\mathbf{s}},t)d\Omega$$

[units are power/area] $\left[\phi / c = \text{energy density} \right]$

When we integrate the radiative transfer equation over all directions...

$$\frac{1}{c} \frac{\partial L(\mathbf{r}, \hat{\mathbf{s}}, t)}{\partial t} = -\nabla \cdot L(\mathbf{r}, \hat{\mathbf{s}}, t) \hat{\mathbf{s}} \longrightarrow D\nabla^2 \Phi(\mathbf{r}, t)$$

$$\frac{1}{c} \frac{\partial}{\partial t} \Phi(\mathbf{r}, t)$$
(and other terms)
$$-(\mu_a + \mu_s) L(\mathbf{r}, \hat{\mathbf{s}}, t) - \mu_a \Phi(\mathbf{r}, t)$$

$$+\mu_s \int_{4\pi} L(\mathbf{r}, \hat{\mathbf{s}}, t) p(\cos^{-1}(\hat{\mathbf{s}} \cdot \hat{\mathbf{s}}')) d\Omega$$

$$+S(\mathbf{r}, \hat{\mathbf{s}}, t) \longrightarrow \text{Various source terms}$$
(nicht sehr wichtig)

Don't read this slide too closely

The full equation becomes

$$-D\nabla^{2}\Phi(\mathbf{r},t) + \mu_{a}\Phi(\mathbf{r},t) + \frac{1}{c}\frac{\partial\Phi(\mathbf{r},t)}{\partial t} + \frac{3D}{c}\left[\mu_{a}\frac{\partial\Phi}{\partial t} + \frac{1}{c}\frac{\partial^{2}\Phi}{\partial t^{2}}\right] = S_{0}(\mathbf{r},t) - 3D\nabla\cdot\mathbf{S}_{1}(\mathbf{r},t) + \frac{3D}{c}\frac{\partial S_{0}(\mathbf{r},t)}{\partial t},$$

where D is the optical diffusion coefficient,

$$D = \frac{1}{3(\mu_a + \mu_s(1 - g))}$$

"Reduced scattering" substitution

Time-dependent diffusion equation

$$S_0(\mathbf{r},t) - 3D\nabla \cdot \mathbf{S}_1(\mathbf{r},t)$$

directionality of emission; vanishes for isotropic emission J. B. Fishkin et al., "Gigahertz photon density waves in a turbid medium: Theory and experiments," *Phys. Rev. E* **53**: 2307-2319 (1996).

Steady-state diffusion equation

Dropping time-dependent terms and assuming an isotropic source yields:

$$-D\nabla^{2}\Phi(\mathbf{r},t) + \mu_{a}\Phi(\mathbf{r},t) = S_{0}(\mathbf{r},t)$$
where $D = 1/[3(\mu_{a} + \mu'_{s})]$
The Green's function for this equation is
$$\Phi = \frac{1}{2} \frac{e^{-\mu_{eff}r}}{S(\mathbf{r}=0)}$$

$$\Phi_G = \frac{1}{4\pi D} \frac{r}{r}$$

where $\mu_{\rm eff}$ is the 'effective attenuation coefficient':

$$\mu_{eff} = \left[3\mu_{a}(\mu_{a} + \mu_{s}') \right]^{\frac{1}{2}}$$

Review of assumptions in the derivation of the photo-diffusion equation

Radiance is only mildly anisotropic

problem near boundaries and sources!

Scattering dominates absorption $\mu_s' >> \mu_a$

"Scattering frequency" >> source modulation frequency

Fluence from an isotropic point source: Theoretical vs. Monte Carlo simulation

- μ_a = **0.01** mm⁻¹
- $\mu_s = 10.0$ mm⁻¹
- g=0.9
- n_{rel} = 1.4
- Isotropic emitter, z = 24.75

Fluence from an isotropic point source: Theoretical vs. Monte Carlo simulation (cut-through of previous slide)

- μ_a = 0.01 mm⁻¹
- $\mu_s = 10.0$ mm⁻¹

- n_{rel} = 1.4
- Isotropic emitter, z = 24.75

Fluence from an isotropic point source: Theoretical vs. Monte Carlo simulation (zoomed in)

disagreement near the source

- μ_a = 0.01 mm⁻¹
- $\mu_s = 10.0$ mm⁻¹

- n_{rel} = 1.4
- Isotropic emitter, z = 24.75

Fluence from an isotropic point source: Theoretical vs. Monte Carlo simulation

 $\mu_a = 0.2 \text{ mm}^{-1}$

• $\mu_s = 10.0 \text{ mm}^{-1}$

- n_{rel} = 1.4
- Isotropic emitter, z = 24.75 mm

Fluence from an isotropic point source: Theoretical vs. Monte Carlo simulation

- μ_a = **0.2** mm⁻¹
- μ_s = 10.0 mm⁻¹
- g=0.9
- n_{rel} = 1.4
- Isotropic emitter, z = 24.75

Roadmap for today

radiative transport equation

diffusion equation

reflectance measurements in space and time

steady-state pulsed sinusoidally-modulated

Fluence from an isotropic point source: Theoretical vs. Monte Carlo simulation

Exact boundary condition for the photo-diffusion equation

index-matched: no light heading downward at boundary

index-mismatched: downward irradiance from Fresnel reflections

But highly anisotopic!

Compromise with diffusion approximation, and get...

How to write the boundary condition: options

This motivates the "extrapolated-boundary" condition:

Extrapolated BC:
$$\Phi|_{z=-2AD} = 0$$

Image solutions for the partial-current and extrapolated boundary conditions

How to model an incident laser beam

Monte Carlo simulation of normally-incident beam

- μ_a = 0.01 mm⁻¹
- μ_s = 1.0 mm⁻¹
 g=0.9

star indicates depth of "equivalent" point source from previous slide

Roadmap for today

radiative transport equation diffusion equation

boundary conditions

reflectance measurements in space and time

steady-state pulsed sinusoidally-modulated

$$\Phi_{in} = \Phi_{source} + \Phi_{image}$$

$$= \frac{1}{4\pi D} \left(\frac{\exp(-\mu_{eff} r_{source})}{r_{source}} - \frac{\exp(-\mu_{eff} r_{image})}{r_{image}} \right)$$
infinite-boundary Green's function

Spatially-resolved diffuse reflectance yields estimates of scattering and absorption coefficients

$$\Phi(\rho) = \frac{1}{4\pi D} \left(\frac{\exp(-\mu_{eff} r_1(\rho))}{r_1(\rho)} - \frac{\exp(-\mu_{eff} r_2(\rho))}{r_2(\rho)} \right)$$

What do you actually detect? *Part I: What is truly happening*

What do you actually detect? Part II: What you can model using diffusion theory

- Detected signal usually assumed proportional to fluence, flux, or some linear combination
- Usually only a relative measurement (to other locations or times)

One example of a formula

A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium," JOSA A 14(1), 246-254 (1997).
R. C. Haskell et al., "Boundary conditions for the diffusion equation in radiative transfer," JOSA A 11(10), 2727-2741 (1994).

Optical fibers preferentially collect photons that have interrogated specific tissue regions

mus = 2, rho = 3

- $\mu_a = 0.01 \text{ mm}^{-1}$ $\mu_s = 2.0 \text{ mm}^{-1}$
- g=0.9

Alternatives to diffusion theory

- More refined mathematical models
 - More terms (higher angular dependence) retained in the expansion of the transport equation
 - Numerical solution of the transport equation
 - Exact solutions to Maxwell's equations (preserves coherence, polarization)
- Simulation
 - Monte Carlo methods -> 'Lookup tables'
- Empirical relationships between light distributions and known conditions (i.e., calibration)
 - Multivariate methods, neural networks